A variance component method for integrated pathway analysis of gene expression data
نویسندگان
چکیده
منابع مشابه
A variance component method for integrated pathway analysis of gene expression data
BACKGROUND The application of pathway and gene-set based analyses to high-throughput data is increasingly common and represents an effort to understand underlying biology where single-gene or single-marker analyses have failed. Many such analyses rely on the a priori identification of genes associated with the trait of interest. In contrast, this variance-component-based approach creates a simi...
متن کاملAnalysis of Variance for Gene Expression Microarray Data
Spotted cDNA microarrays are emerging as a powerful and cost-effective tool for large-scale analysis of gene expression. Microarrays can be used to measure the relative quantities of specific mRNAs in two or more tissue samples for thousands of genes simultaneously. While the power of this technology has been recognized, many open questions remain about appropriate analysis of microarray data. ...
متن کاملA tobit variance-component method for linkage analysis of censored trait data.
Variance-component (VC) methods are flexible and powerful procedures for the mapping of genes that influence quantitative traits. However, traditional VC methods make the critical assumption that the quantitative-trait data within a family either follow or can be transformed to follow a multivariate normal distribution. Violation of the multivariate normality assumption can occur if trait data ...
متن کاملAnalysis of variance components in gene expression data
MOTIVATION A microarray experiment is a multi-step process, and each step is a potential source of variation. There are two major sources of variation: biological variation and technical variation. This study presents a variance-components approach to investigating animal-to-animal, between-array, within-array and day-to-day variations for two data sets. The first data set involved estimation o...
متن کاملPrincipal component analysis for clustering gene expression data
MOTIVATION There is a great need to develop analytical methodology to analyze and to exploit the information contained in gene expression data. Because of the large number of genes and the complexity of biological networks, clustering is a useful exploratory technique for analysis of gene expression data. Other classical techniques, such as principal component analysis (PCA), have also been app...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: BMC Proceedings
سال: 2016
ISSN: 1753-6561
DOI: 10.1186/s12919-016-0053-6